Grade 11 Chemistry Exam Review

1. Explain the 5 main early theories of the structure of the atom. Include the name of the scientists and the drawing of the atom.

2. Fill in the following chart with the number of electrons, protons, neutrons, atomic number, mass number, and the element notations

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atomic Number</th>
<th>Mass Number</th>
<th># of protons</th>
<th># of neutrons</th>
<th># of electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>K+</td>
<td>13</td>
<td>13</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td>75</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>117</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3-</td>
<td>184</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. How did Rutherford discover the neutron.

4. Draw Bohr diagrams (EELD) and Lewis dot diagrams for the following elements: Li, Ca, Al, C, P, O, F, Kr

5. Draw EELD diagrams of the following ions: Na⁺, Mg²⁺, B³⁺, Si⁴⁺, N³⁻, S²⁻, Cl⁻.

6. Describe how Bohr deduced his theory on the atomic model by looking at the spectrum for hydrogen and why it may be important to our society.

7. What flame colour represents what ion?

8. Find the average atomic mass of P when the atomic mass with 15 neutrons is 30 is in 77% abundance and the atomic mass with 17 neutrons is 32 is in 23% abundance.

9. Find the average atomic mass of Ca when the element which has 20 neutrons is in 12% abundance and the element which has 21 neutrons is in 88% abundance.

10. Find the average atomic mass of Cr if the atomic number is 24 and the two isotopes are; 18 neutrons at 97% abundance, and 19 neutrons at 3% abundance.

11. Discuss the impact that Schrodinger and DeBroglie had on the theories of quantum mechanics.

12. What are the four quantum numbers? (What do they stand for)

13. What do the s, p, and d orbitals look like?

14. Draw the electron configuration for the following elements: Zn, N, Ba, Sn, Zr, Si, I, K, Br

15. Describe the three rules that are required when drawing electron energy diagrams (the one with all the boxes) (Aufbau Principle, Hund’s Rule, Pauli’s Exclusion Principle).

16. Draw the energy electron diagrams for the following elements: P, Mg, O, Tc, Cd, Cs, Ir, V

17. Describe what an isotope and a radioisotope is and give an example for each. Include the example of C¹⁴.

18. What is ionization energy, electron affinity, and electronegativity?

19. For the following elements decide which one has a larger atomic radius, electronegativity, ionization energy, and reactivity.
<table>
<thead>
<tr>
<th>Atomic Radius</th>
<th>electronegativity</th>
<th>ionization energy</th>
<th>reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>largest</td>
<td>largest</td>
<td>largest</td>
<td>greatest</td>
</tr>
<tr>
<td>O</td>
<td>Po</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>Pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>Ra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>Rb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Describe how the atomic radius gets smaller as we add more electrons in a row.
21. Describe how the reactivity is linked to ionization energy for the metals and electron affinity for the non-metals.
22. Which family of elements do the following elements belong?
 a) He
 b) Cl
 c) Ca
 d) Cs
 e) Pm
 f) Es
 g) Yb
 h) I
 i) Np
 j) Sr
 k) Fr
 l) Xe

23. What is the octet rule and what does it mean for any element that has its octet full.
24. What is the bonding capacity of the following elements: P, S, Cl, Na, K, Ba, B, Mg, Li, Si
25. Describe the difference between ionic bonds and covalent bonds. Be sure to include which type of elements are joined together for each type of bond, how strong the bond is, if the electrons are either transferred or shared.
26. Indicate whether the following are ionic or covalent bonds and draw the lewis structures would look with the bonds.
 a) LiF
 b) F₂
 c) MgS
 d) O₂
 e) AlF₃
 f) CO₂
 g) H₂O
 h) Mg₃N₂
27. Describe polar covalent, non-polar covalent, and ionic bond with respect to electronegativities.
28. Discuss polar vs non-polar substances and their ability to dissolve in different solvents.
29. Talk about Hydrogen bonding and whether it is polar or nonpolar substance.
30. What is the bonding capacity of the following elements: P, S, Cl, Na, K, Ba, B, Mg, Li, Si
31. Draw diagrams of the following molecules. Include the name of the shape of the molecule, the angles and if the molecule is polar or non-polar: SnF₂, SnF₄, XeCl₆, XeCl₄, AsCl₃, AsCl₅, NH₃, CH₄, NCl₃, BF₃, H₂O, SCl₂
32. Name the following compounds
 a) NaF
 b) CaF₂
 c) CoO
 d) Mg₃N₂
 e) ZnBr₂
 f) CO₂
 g) SnCl₂
 h) CrF₂
 i) MnO₂
 j) MnS₂
 k) Cu₃N₂
 l) SO₂
 m) AsBr₃
 n) CuO
 o) AlBr₃
 p) Hg₃O
 q) Br₂O
 r) FrH
 s) SnS₂
 t) MnCl₂
 u) CdO
 v) CaO
 w) AlN
 x) KH
 y) BeBr₂
 z) SnS
 a) LiBr
 b) SnCl₄
 c) MgH₂
 d) CO
 e) SbBr₃
 f) Cu₂O
 g) Li₂O
 h) MnS₂
 i) MnCl₃
 j) SrO
 k) HgO
 l) CCl₄
 m) Cu₃N
 n) CS₂
 o) NaBr₂
 p) Ca(NO₃)₂
 q) Fe(ClO₃)₂
 r) HBrO₂
 s) HgCO₃
 t) Ba(ClO₃)₂
 u) Li₂PO₃
 v) CuS
 w) PbF₄
 x) MgCO₃
 y) Al₂(SO₃)₃
 z) Ca₅(PO₄)₂
33. Write the chemical formula for the following
 a) Sodium Bromide
 b) Copper (II) Nitrite
c) Ferric Hydroxide

d) Magnesium Carbonate

e) Iron (II) Sulfide

f) Potassium Sulfite

g) Barium Carbonate

h) Lead (IV) Phosphate

i) Sodium Perchlorate

j) Hypobromous Acid

k) Hydrogen Oxide

l) Bismuth (V) Sulfide

m) Tin (IV) Fluoride

n) Manganese (IV) Oxide

o) Cesium Sulfite
p) Silver Iodite

q) Sulfur Trioxide

r) Calcium Chloride

s) Aluminum hypobromite

t) Calcium Phosphate

u) Sodium Peroxide

v) Lithium Phosphite

w) Silver Perchlorate
x) Zinc Chlorite

y) Lithium Sulfate

z) Carbon Tetrachloride

ai) Cobalt Hydroxide

bi) Calcium Hypobromite

ci) Magnesium Iodate

di) Potassium Sulfate

ei) Nickel Sulfate

fi) Antimony (V) Perbromate

gi) Calcium Phosphite

hi) Silver Nitrate

34. Balance the following equations.

a) \(\text{Na} + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{H}_2 \)

b) \(\text{CaCO}_3 + \text{HCl} \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2 \)

c) \(\text{Mg} + \text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2 \)

d) \(\text{KClO}_3 \rightarrow \text{KCl} + \text{O}_2 \)

e) \(\text{C}_3\text{H}_8 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \)

f) \(\text{Al} + \text{H}_2\text{SO}_4 \rightarrow \text{Al}_2(\text{SO}_4)_3 + \text{H}_2 \)

g) \(\text{Fe}_2\text{O}_3 + \text{C} \rightarrow \text{Fe} + \text{CO}_2 \)

h) \(\text{NH}_3 + \text{O}_2 \rightarrow \text{NO} + \text{H}_2\text{O} \)

i) \(\text{Fe(OH)}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{O} \)

j) \(\text{CaC}_2 + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + \text{C}_2\text{H}_2 \)

k) \(\text{CH}_3\text{OH} + \text{O}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \)

l) \(\text{FeCl}_2 + \text{KmNO}_4 + \text{HCl} \rightarrow \text{FeCl}_3 + \text{KCl} + \text{MnCl}_2 + \text{H}_2\text{O} \)

m) \(\text{Cu} + \text{HNO}_3 \rightarrow \text{Cu(NO}_3)_2 + \text{NO} + \text{H}_2\text{O} \)

35. Define the law of conservation of mass

36. Define the law of definite proportions

37. Define the law of constant composition

38. What type of reaction are the following unbalance equations. Balance them

a) \(\text{Na} + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{H}_2 \)

b) \(\text{CaCO}_3 + \text{HCl} \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2 \)

c) \(\text{Mg} + \text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2 \)

d) \(\text{KClO}_3 \rightarrow \text{KCl} + \text{O}_2 \)

e) \(\text{C}_3\text{H}_8 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \)

f) \(\text{Al} + \text{H}_2\text{SO}_4 \rightarrow \text{Al}_2(\text{SO}_4)_3 + \text{H}_2 \)

g) \(\text{Fe}_2\text{O}_3 + \text{C} \rightarrow \text{Fe} + \text{CO}_2 \)

h) \(\text{NH}_3 + \text{O}_2 \rightarrow \text{NO} + \text{H}_2\text{O} \)

i) \(\text{Fe(OH)}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{O} \)

j) \(\text{CaC}_2 + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + \text{C}_2\text{H}_2 \)

k) \(\text{CH}_3\text{OH} + \text{O}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \)

l) \(\text{FeCl}_2 + \text{KmNO}_4 + \text{HCl} \rightarrow \text{FeCl}_3 + \text{KCl} + \text{MnCl}_2 + \text{H}_2\text{O} \)

m) \(\text{Cu} + \text{HNO}_3 \rightarrow \text{Cu(NO}_3)_2 + \text{NO} + \text{H}_2\text{O} \)

39. Complete the following reactions. Remember to balance them.

a) \(\text{Fe} + \text{CuSO}_4 \rightarrow \)

b) \(\text{Cu} + \text{AgNO}_3 \rightarrow \)

c) \(\text{Mg} + \text{HCl} \rightarrow \)

d) \(\text{Li} + \text{H}_2\text{O} \rightarrow \)

e) \(\text{Na}_2\text{CO}_3 + \text{CuSO}_4 \rightarrow \)
f) \(\text{NH}_4\text{SO}_4 + \text{CaCl}_2 \rightarrow \)
g) \(\text{KOH} + \text{Co(NO}_3\text{)}_2 \rightarrow \)
h) \(\text{Na}_2\text{S} + \text{Pb(NO}_3\text{)}_2 \rightarrow \)
i) \(\text{Zn} + \text{Pb(NO}_3\text{)}_2 \rightarrow \)
j) \(\text{Ag} + \text{CuSO}_4 \rightarrow \)
k) \(\text{Al} + \text{NiCl}_2 \rightarrow \)
l) \(\text{Mg} + \text{H}_2\text{SO}_4 \rightarrow \)
m) \(\text{Cu(OH)}_2 + \text{HNO}_3 \rightarrow \)
n) \(\text{LiOH} + \text{H}_3\text{PO}_4 \rightarrow \)
o) \(\text{Fe(OH)}_3 + \text{H}_2\text{SO}_4 \rightarrow \)
p) \(\text{Ca(OH)}_2 + \text{HBr} \rightarrow \)

40. What is the molar mass of the following.
 a) \(\text{NH}_3 \)
 b) \(\text{AgNO}_3 \)
 c) \(\text{H}_2\text{O} \)
 d) \(\text{C}_6\text{H}_12\text{O}_6 \)
 e) \(\text{AlCl}_3 \)
 f) \(\text{Mg(BrO}_4\text{)}_2 \)
 g) \(\text{Fe}_2(\text{CO}_3\text{)}_3 \)
 h) \(\text{CO}_2 \)

41. How many moles of \(\text{AlBr}_3 \) are there if there is:
 a) 4.6 grams
 b) 3.9 grams
 c) \(2.3 \times 10^6 \) grams

42. How many grams of \(\text{B}_2\text{S}_3 \) is there if there is:
 a) 3.8 moles
 b) 2.9 moles
 c) \(7.3 \times 10^4 \) grams

43. How many atoms of \(\text{He} \) are there if there are:
 a) 4.7 moles
 b) 2.9 moles
 c) 8.6 moles

44. How many molecules of \(\text{AgNO}_3 \) are there in:
 a) 7.8 moles
 b) 9.2 moles
 c) 3.3 moles

45. Calculate the percentage by mass of each element in the following compounds.
 a) \(\text{CH}_4 \)
 b) \(\text{C}_3\text{H}_8 \)
 c) \(\text{NaHCO}_3 \)

46. Iron and oxygen combine to form two different compounds. The formulas of the compounds are \(\text{FeO} \) and \(\text{Fe}_2\text{O}_3 \). Calculate the percentage by mass of iron and oxygen in each compound.

47. Ammonium nitrate, \(\text{NH}_4\text{NO}_3 \), and ammonium sulphate, \(\text{(NH}_4\text{)}_2\text{SO}_4 \), are both used as fertilizers. Show by calculation which compound has the greater percentage by mass of nitrogen.

48. Determine the empirical formula of each of the following compounds. The percentage composition by mass is given.
 a) 85.7% carbon, 14.3% hydrogen
 b) 52.9% aluminum, 47.1% oxygen
 c) 62.6% lead, 8.4% nitrogen, 29.0% oxygen

49. A compound of carbon, hydrogen, and chlorine consists of 49.0%, 2.75% hydrogen, and 48.3% chlorine by mass. What is the empirical formula of the compound?

50. Chemical analysis of rubbing alcohol show that it consists of 59.97% carbon, 13.35% hydrogen, and 26.68% oxygen by mass. What is the empirical formula of rubbing alcohol?

51. Chemical analysis of one of the constituents of gasoline showed that it consists of 92.29% carbon and 7.71% hydrogen by mass. If the molecular mass of the compound is 78 g/mol, determine its molecular formula.
52. A compound of silicon and fluorine was analyzed and found to consist of 33.0% silicon and 67.0% fluorine by mass. The molecular mass of the compound was determined by experiment to be 170 g/mol. What is the molecular formula of the compound?

53. Glucose is an important source of energy for organisms. Analysis of a sample of glucose shows that it consists of 39.95% carbon, 6.71% hydrogen, and the remainder oxygen. In a separate experiment, the molar mass of glucose is found to be 180 g. Determine the molecular formula of glucose.

54. C₂H₅OH + 3O₂ → 2CO₂ + 3H₂O
 a) What mass of oxygen is required to react with 1200 g of ethanol
 b) If 655 g of water is produced, what mass of ethanol is burned?

55. Sodium hydroxide or caustic soda, NaOH, used in many household drain cleaners, can be prepared by the reaction of calcium hydroxide, Ca(OH)₂, is also formed in the reaction.
 a) Write the balanced equation for the reaction.
 b) What mass of sodium hydroxide can be prepared by the reaction of 225 g of calcium hydroxide with excess sodium carbonate.

4FeS + 7O₂ → 2Fe₂O₃ + 4SO₂

56. The sulphur dioxide produced in this reaction, and in other reactions similar in it, is responsible for much of the acid rain that falls on North America. What mass of iron(III) oxide can be obtained by the roasting of 774 g of the sulphide ore? What mass of sulphur dioxide is produced?

57. Solid carbon dioxide (dry ice) may be used for refrigeration. Some of this carbon dioxide is obtained as a by-product when hydrogen is produced from methane in the following reaction.
 CH₄ + 2H₂O → CO₂ + 4H₂
 a) What mass of carbon dioxide should be obtained from the complete reaction of 1250 g of methane?
 b) If the actual yield obtained is 3000 g, what is the percentage yield?

58. Ammonium nitrate is an important compound used both as a fertilizer and as an explosive. It is produced by reacting ammonia with concentrated nitric acid.
 NH₃ + HNO₃ → NH₄NO₃
 a) What mass of ammonium nitrate can theoretically be produced from the reaction of 375.0 g of ammonia with excess nitric acid?
 b) If the percentage yield is 88.5%, what is the mass of ammonium nitrate actually obtained?

59. Finish the following equations taking into account the solubility rules. Circle all spectator ions (the ones that remain as ions)
 a) NaI + Pb(NO₃)₂
 b) CaCl₂ + Na₂CO₃
 c) BaBr₂ + Na₂SO₄
 d) CuSO₄ + K₂CO₃
 e) NH₄OH + FeI₂

60. What is the difference between an Arrhenius acid/base and a Bronsted-Lowry acid/base.

61. What is the concentration of a solution of 3.7 moles of CH₄
 a) 1L
 b) 7L
 c) 450 mL

62. What is the volume of 5.8 moles of a solution of NaCl
 a) 4.5 moles/L
 b) 2.9 moles/L

63. What is the concentration of a solution of 8 L of 4.7 moles/L, if it is diluted to 200 L.

64. What is the concentration of a solution of 200 mL of 3.2 mol/L, if it is diluted to 1 L.

65. If you perform an acid base titration and place 50 mL of 0.25 mol/L acetic acid into an Erlenmeyer and read the burette initially at 3.5 mL and at the endpoint at 25.2 mL, what is the concentration of the base?
66. If the hydronium ion concentration of a solution is 2.5×10^{-6}, what is the hydroxide ion concentration, the pH, and the pOH.

67. If the hydroxide ion concentration of a solution is 4.7×10^{-4}, what is the hydronium ion concentration, the pH, and the pOH.

68. If the pH of a solution is 3.4, what is the pOH, the hydroxide concentration, and the hydronium ion concentration?

69. If the pOH of a solution is 8.4, what is the pH, the hydroxide concentration, and the hydronium ion concentration?

70. Describe Boyle's Law, Charle's Law, and the Pressure-Temperature Law.

71. What is the difference between STP and SATP?

72. What is the volume of 1 mol of a gas at STP (Molar Volume)

73. What is the pressure of He if it begins at 78°C with a pressure of 56 kPa and then gets changed to a temperature of 109°C.

74. What is the Temperature of O$_2$ gas if it starts at 45°C and a volume of 7L and ends at a volume of 30L?

75. What would be the new temperature of a gas that begins at 56°C with a pressure of 90 kPa and changes to a pressure of 207 kPa.

76. What would be the volume of He if it begins at 4° at of volume of 8L and the temperature then increases by 7°.

77. What would be the pressure of F$_2$ gas if the initial pressure was 67 kPa and the volume increased from 4L to 9L.

78. What is the initial volume of Cl$_2$ if it ends with a volume of 6L. The initial pressure is 145 kPa with a volume of 7L and ends with a pressure of 200 kPa with a volume of 4L.

79. \[\text{KClO}_3 \rightarrow \text{KCl} + \text{O}_2 \]
 Balance the following equation before starting the question.
 During the formation of 35 g of potassium chloride, what volume of oxygen gas was produced when measured at 10°C and 100 kPa.

80. What is the pressure of F$_2$ gas if it starts at a volume of 4L and ends at a volume that is increased by 8L and a pressure of 78Kpa.

81. What is the pressure of Ne if it begins at 100kPa, 8L, and 33°C that changes to 2L at 56°C.

82. What is the temperature of Ar if there is 3.6 g, 560 kPa, and 7.4L. Remember R=8.31 kPa L/mol K

83. \[\text{N}_2 + \text{H}_2 \rightarrow \text{NH}_3 \]
 How many moles of the following are required to manufacture 5.0 mol of ammonia?
 a) nitrogen
 b) hydrogen

84. \[\text{C}_3\text{H}_8 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]
 How many moles of oxygen are required to react with
 a) 3.0 mol of propane
 b) 20.0 mol of propane
 c) 0.2 mol of propane

85. \[\text{FeS} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + \text{SO}_2 \]
 If I have 4.15 g of Iron Sulfide, how many grams of Iron (III) Oxide will be made?

86. \[\text{C}_2\text{H}_5\text{OH} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]
 If I have 3.8 g of oxygen, how much water will be made?

87. \[\text{Na} + \text{Cl}_2 \rightarrow \text{NaCl} \]
 If I have 4.5 g of sodium and 6.4 grams of chlorine, which is the limiting reactant and which is in excess?

88. \[\text{Al} + \text{Br}_2 \rightarrow \text{AlBr}_3 \]
 If I have 3.2 g of aluminum and 5.4 g of bromine, which is the limiting reactant and which is in excess?
89. \[\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]

What mass of carbon dioxide should be obtained from the complete reaction of 1250 g of methane and 2000 g of water?

90. \[\text{N}_2\text{H}_4 + 2\text{H}_2\text{O}_2 \rightarrow 2\text{HNO}_3 + 4\text{H}_2 \]

If I have 4.3 g of \(\text{N}_2\text{H}_4 \) and 6.8 g of \(\text{H}_2\text{O}_2 \), what will the percent yield be if in a reaction, I get 4.9 g of \(\text{HNO}_3 \) produced?

91. Calculate the energy required to raise the temperature of 200 g of water from 13°C to 45°C.

92. Calculate the energy released when the temperature of water is changed from 69°C to 23°C.

93. Draw a bomb calorimeter and explain how it works.

94. A 7.9 g sample of benzoic acid (\(\text{C}_6\text{H}_5\text{COOH} \)) is burned in a bomb calorimeter. The reaction produced enough heat to raise the temperature of the water in the calorimeter by 3.98°C. The calorimeter holds 4.56 L of water. Determine the heat of reaction. Calculate the molar heat of reaction of benzoic acid. Write the thermochemical equation for the combustion of benzoic acid.

95. A 3.21 g sample of acetylene, \(\text{C}_2\text{H}_2 \), was burned in a calorimeter containing 5.8 L of water. After the combustion the temperature rose from 7.9°C to 23.8°C. Determine the molar heat of reaction and write the thermochemical equation for the reaction.

96. A 25g sample of Ethane, \(\text{C}_2\text{H}_6 \), was burned in a calorimeter containing 5.8 L of water. After the combustion the temperature rose from 7.9°C to 23.8°C. Determine the molar heat of reaction and write the thermochemical equation for the reaction.

97. Name the following organic compounds.

a)

```
   \[ \text{Cl} \quad \text{Cl} \]
```

b)

```
```

c)

```
```

d)

```
```

e)

```
```
98. Write the product for the following reactions. Include the name of the reactants and products

- For the reaction with \(\text{Br}_2 \):
 \[
 \text{alkene} + \text{Br}_2 \\
 \text{Product}
 \]

- For the reaction with \(\text{H}_2 \) catalyzed by Pt:
 \[
 \text{alkene} + \text{Pt} + \text{H}_2 \\
 \text{Product}
 \]

- For the reaction with \(\text{Cl}_2 \):
 \[
 \text{alkane} + \text{Cl}_2 \\
 \text{Product}
 \]

- For the reaction with \(\text{H}_2 \) catalyzed by Pt:
 \[
 \text{benzene} + \text{Pt} + \text{H}_2 \\
 \text{Product}
 \]